Synthesizing noise-tolerant language learners
نویسندگان
چکیده
منابع مشابه
Synthesizing Noise-Tolerant Language Learners
An index for an r.e. class of languages (by definition) generates a sequence of grammars defining the class. An index for an indexed family of languages (by definition) generates a sequence of decision procedures defining the family. F. Stephan’s model of noisy data is employed, in which, roughly, correct data crops up infinitely often, and incorrect data only finitely often. Studied, then, is ...
متن کاملSynthesizing Learners Tolerating Computable Noisy Data
An index for an r.e. class of languages (by definition) generates a sequence of grammars defining the class. An index for an indexed family of recursive languages (by definition) generates a sequence of decision procedures defining the family. F. Stephan’s model of noisy data is employed, in which, roughly, correct data crops up infinitely often, and incorrect data only finitely often. In a com...
متن کاملNoise Tolerant Inductive Learning
A novel iterative noise reduction learning algorithm is presented in which rules are learned in two phases. The ftrst phase improves the quality of training data through concept-driven closed-loop filtration process. In the second phase, classification rules are relearned from the filtered training dataset.
متن کاملNoise-Tolerant Conceptual Clustering
Fisher (1987a,b) introduced a performance task for conceptual clustering: flexible prediction of arbitrary attribute values, not simply the prediction of a single 'class' attribute. This paper extends earlier analysis by considering the effects of noise and other environmental factors. The degradation in flexible prediction accuracy that results from noise is mitigated by 'preferred' prediction...
متن کاملNoise-Tolerant Windowing
Windowing has been proposed as a procedure for efficient memory use in the ID3 decision tree learning algorithm. However, it was shown that it may often lead to a decrease in performance, in particular in noisy domains. Following up on previous work, where we have demonstrated that the ability of rule learning algorithms to learn rules independently can be exploited for more efficient windowing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 2001
ISSN: 0304-3975
DOI: 10.1016/s0304-3975(00)00132-8